skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sista, Harsha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 3, 2026
  2. Free, publicly-accessible full text available January 3, 2026
  3. We report a comparative study to evaluate the effects of surface coatings with different hydrophobicities and icephobicities on the performance of a hybrid anti-/de-icing system that integrates surface heating with hydro-/ice-phobic coating for aircraft icing mitigation. While a flexible electric film heater wrapped around the leading edge of an airfoil/wing model was used to heat the airfoil frontal surface to prevent ice accretion near the airfoil leading edge, three different kinds of coatings were applied to coat the airfoil model at three distinct spanwise locations, which included an icephobic coating with an outstanding icephobicity but a weak hydrophobicity; a superhydrophobic surface (SHS) coating with outstanding water repellency but a moderate icephobicity; and a commonly used hydrophilic coating with poor hydrophobicity and poor icephobicity. Surface wettability was found to play a more important role than icephobicity in affecting the performance of the hybrid anti-/de-icing systems. In comparison to the approach of forceful heating the hydrophilic airfoil surface, the hybrid approach with the SHS coating was found to be able to achieve about 90% energy savings in keeping the entire airfoil surface ice-free; the corresponding energy savings for the hybrid system with the icephobic coating was only about 10%. 
    more » « less
  4. The accretion of ice on the surface of a wind turbine blade causes a drastic reduction in the aerodynamic performance and as a result, the power output, in addition to posing a safety hazard. To quantify this phenomenon, an experimental study was conducted in the Iowa State University Icing Research Tunnel (ISU-IRT) to understand the dynamic ice accretion process and resultant aerodynamic performance degradation specifically experienced by offshore wind turbines at higher Liquid Water Content (LWC) levels. Four different LWC values were tested for both glaze and rime ice conditions each, to cover the possible spectrum of typical icing conditions. A high-speed imaging camera was used to capture the dynamic ice accretion process, while a Digital Image Projection (DIP) technique was used to perform the 3D qualification of the ice accretion characteristics. Two highly sensitive multi-axis force and moment transducers were used to measure the lift and drag forces acting upon the airfoil. The lift force was found to decrease, and the drag force was found to increase with the formation of ice. The amount of change in the unsteady aerodynamic forces was found to depend on the ambient temperature, the LWC, as well as the accreted ice structure. 
    more » « less